Problems 1, 14.03.2022
(Please solve each problem on a separate sheet of paper)

1. Consider the one-dimensional Ising model with periodic boundary conditions and $h=0$. Evaluate the correlation function in the thermodynamic limit:

$$
\begin{equation*}
h(k, \ell ; T):=\lim _{N \rightarrow \infty} \Gamma(k, l ; T, N) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma(k, l ; T, N)=\left\langle s_{k} s_{\ell}\right\rangle-\left\langle s_{k}\right\rangle\left\langle s_{\ell}\right\rangle \tag{2}
\end{equation*}
$$

and $\ell>k$. To simplify calculations one may use the spectral decomposition of the transfer matrix \mathbf{L}

$$
\begin{equation*}
\mathbf{L}=\sum_{i=1}^{2} \lambda_{i}\left|v_{i}><v_{i}\right|=\sum_{i=1}^{2} \lambda_{i} P_{i} \tag{3}
\end{equation*}
$$

and the relation

$$
\begin{equation*}
L_{s_{i} s_{j}}=<e_{i}|\mathbf{L}| e_{j}> \tag{4}
\end{equation*}
$$

where $\mid e_{i}>$ denotes the eigenvector of Pauli matrix σ^{z} corresponding to eigenvalue s_{i}.
Is it possible the write the correlation function $h(k, \ell ; T)$ in the form

$$
\begin{equation*}
h(k, \ell ; T)=e^{-\frac{\ell-k}{\xi}}, \tag{5}
\end{equation*}
$$

where $\xi=\left(\log (\tanh K)^{-1}\right)^{-1}$. What is the asymptotic form of ξ for $T \rightarrow 0$, i.e., for $K \gg 1$?
2. Consider the one-dimensional Ising model with free boundary conditions and $h=0$. Rewrite the expression for the partition function $Z_{\text {free }}(T, N)$ using the transfer matrix and using the spectral decomposition derive the result obtained already via the recursion formula: $Z_{\text {free }}(T, N)=2 \lambda_{1}^{N-1}$.
Using the above approach find the free energy corresponding to the fixed boundary conditions $s_{1}=s_{N}=1$ and $s_{1}=s_{N}=-1$. What is the form of the bulk Gibbs free energy density $g_{b}(T)$ in each of the above cases, i.e., for free, fixed, and periodic b.c.?
3. Consider the one-dimensional $X Y$ model with periodic boundary conditions:

$$
\begin{equation*}
\mathcal{H}_{X Y}\left(\left\{\theta_{i}\right\}\right)=-J \sum_{i=1}^{N} \vec{s}_{i} \cdot \vec{s}_{j} \tag{6}
\end{equation*}
$$

where the two-dimensional vectors (spins) \vec{s}_{i} have unit length and can be rewritten as $\vec{s}_{i}=\left(s_{i}^{x}, s_{i}^{y}\right)=\left(\cos \theta_{i}, \sin \theta_{i}\right)$. Thus

$$
\begin{equation*}
\mathcal{H}_{X Y}\left(\left\{\theta_{i}\right\}\right)=-J \sum_{i=1}^{N} \cos \left(\theta_{i+1}-\theta_{i}\right), \quad \theta_{N+1} \equiv \theta_{1} \tag{7}
\end{equation*}
$$

Evaluate the partition function $Z(T, N)$

$$
\begin{equation*}
Z(T, N)=\int_{0}^{2 \pi} d \theta_{1} \ldots \int_{0}^{2 \pi} d \theta_{N} e^{K \sum_{i=1}^{N} \cos \left(\theta_{i+1}-\theta_{i}\right)} \tag{8}
\end{equation*}
$$

using the transfer matrix method

$$
\begin{equation*}
\mathbf{L}\left|\varphi_{p}>=\lambda_{p}\right| \varphi_{p}> \tag{9}
\end{equation*}
$$

where $<\theta\left|\varphi_{p}>=\varphi_{p}(\theta), \quad<\theta\right| \mathbf{L} \mid \theta^{\prime}>=e^{K \cos \left(\theta-\theta^{\prime}\right)}$ and thus

$$
\begin{equation*}
\int_{0}^{2 \pi} d \theta^{\prime} e^{K \cos \left(\theta-\theta^{\prime}\right)} \varphi_{p}\left(\theta^{\prime}\right)=\lambda_{p} \varphi_{p}(\theta) \tag{10}
\end{equation*}
$$

Calculate the free energy per spin in thermodynamic limit, $g_{b}(T)$, and make the corresponding plot.
Hint: Consider the identity

$$
\begin{equation*}
e^{K \cos \psi}=\sum_{p=-\infty}^{\infty} I_{p}(K) e^{i p \psi} \tag{11}
\end{equation*}
$$

where $I_{n}(z)$ is the n-th modified Bessel function [this identity follows from the form of the generating function for modified Bessel functions $\exp \frac{z}{2}\left(t+\frac{1}{t}\right)=$ $\left.\sum_{n=-\infty}^{\infty} I_{n}(z) t^{n}\right]$.

